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Abstract—This paper presents Font Detective, a cloud-hosted 

application that performs computer vision analysis on user-
supplied images with the aim of identifying a font present. The app 
utilises Amazon’s Web Services platform to deploy a fully-
scalable, load-balanced and resilient product. The application is 
available online at nugenthill.com. 
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I.  INTRODUCTION 
The inspiration behind Font Detective came gradually, 

through multiple meeting with designers, in a variety of 
scenarios. It seemed to me that design is often about gaining 
inspiration in the work of another, questioning “what colour is 
used here?” and working with a similar palette, asking “what if 
I use a similar image, but in this context?”. Until now, however, 
identification of a font has been almost impossible, down to pure 
experience. I have attempted to create a tool to allow designers, 
along with the wider population, to easily identify a font used in 
an image, and to fuel their creativity. 

Font Detective requires users to upload sample images to the 
website, consuming a large amount of space. Font Detective also 
requires image classification using computer vision techniques, 
a computationally-intensive task, consuming a lot of resource. 
Due to these requirements, the task lends itself to the cloud, an 
environment where available resources can easily be scaled to 
meet demand. 

The application I have created allows a user to upload an 
image and have it classified, in the cloud, in real time. 
Unfortunately, due to time constraints, I have not been able to 
progress this to the classification of fonts; I have, however, put 
in place a framework that allows the easy replacement of the 
current classifiers (bananas and faces) with those for individual 
fonts. In Fig. 1 you can see an example of a completed job, 
showing a classified face.  

II. DESIGN 
I compiled several key goals when designing Font Detective 

(the application), wishing to ensure consistently high quality of 
service with a minimum of human intervention. These goals 
were that the application scales automatically in response to 
periods of high or low utilisation; that the application is capable 
of self-diagnosing any issues or errors experienced, and that 

appropriate action would be taken; that the application is secure, 
with isolated components where possible; that the application 
minimises downtime, even during upgrades and, finally, that it 
can be deployed quickly and easily, in an automated fashion 
where possible. The motivation for these goals is to reduce 
dependence upon human activity, which is intrinsically error-
prone, and to shift responsibility to automated, testable services, 
scripts and health checks. 

To achieve these goals, I considered the main infrastructure-
as-a-service (IaaS) providers: Amazon Web Services (AWS), 
Microsoft Azure and Digital Ocean. I also considered platform-
as-a-service (PaaS) providers such as Google Cloud and Heroku, 
however I quickly deemed that these would not be suitable due 
to the diverse requirements of the application. PaaS provides a 
quick, easy-to-deploy environment for applications utilising 
certain technologies, such as Ruby, Node.js and Go, it doesn’t 
however, have the flexibility of IaaS platforms, particularly with 
the deployment of a scalable, multi-element application. 

I also opted to ignore Rackspace, Linode and the multitude 
of similar offerings as, although their hosting was cloud-based, 
they lacked the breadth of tools of the larger providers. Amazon 
and Microsoft both offered a wealth of tools for network 

 
Fig. 1. Interface showing results of classification 

 



monitoring, routing, instance-scaling and storage, whereas the 
smaller platforms often lacked one or more of these elements.  

Another disadvantage was the lack of documentation and 
community support, comparatively with AWS, Azure and 
Digital Ocean; I feared this would slow development in a project 
with a relatively tight time budget. 

Comparing AWS, Azure and Digital Ocean, I found that the 
former two have significantly more functionality. Digital Ocean 
provides high-quality cloud hosting, with the ability to auto-
scale and dynamically route traffic, but lacked platform features 
such as databases, queues or health checks. All of these features 
were possible but required configuration by hand. Amazon and 
Microsoft were much more similar in their features; as such my 
decision to use AWS was ultimately decided by familiarity with 
the service. 

To ensure easy scalability for the application, in keeping 
with the specified design criteria, I decided that the architecture 
should feature homogenous front-end nodes, serving the website 
content and communicating with clients, and homogenous back-
end nodes, processing the requests as they are issued. The 
advantage here is that software only has to be written once and 
that network load can easily be balanced across all the servers: 
there is no individual point of failure. The application features a 
front-end node with a web server, a processing node capable of 
performing classification and, optionally, a training server 
capable of creating new classifiers. 

To maximize security, processing nodes are not accessible 
via the Internet; they need only to communicate with the front-
end nodes and the database. Front-end nodes require Internet 
access but should only have read access to database resources, 
as these will only be used to display results, not written to 
directly. The network is divided into subnets accordingly, 
isolating the processing nodes and allowing access permissions 
to easily be set on that database and other infrastructure. 

III. IMPLEMENTATION 
The application involved two main development areas: the 

front-end website, with the software responsible for serving it, 
and the back-end processing service, performing classification. 
These areas could be worked on independently once an interface 
had been specified, and so I developed them serially, focusing 
on the front-end first.  

A. Front-end 
The front-end is required to serve static content, HTML, 

JavaScript, CSS and images, and to handle user-uploaded 
sample images. Uploaded images were stored in the cloud and a 
processing request added to a queue, making it available to the 
processing nodes. Additionally, some asynchronous 
communication between the front-end and the client’s browser 
is performed, leveraging WebSockets and a REST API to 
achieve this. Due to the breadth of the requirements, I opted to 
implement a custom web server for the task; simple file-serving 
could easily be achieved using Apache or Nginx, but adding the 
additional functionality would require separate applications to 
be written anyway. 

The web server is implemented using Node.js (Node), a 
lightweight, asynchronous server-side JavaScript engine with a 

wealth of plugins available. Node applications are single-
threaded by default, consuming very little in the way of 
resources, lending them to the lower-tier servers available on 
AWS. Another advantage of using Node is that multiple 
instances of the web server may be run in parallel when required, 
for example when running on a larger, multi-core server. This 
capability further lends it to the intended scalability of the 
application. 

The software is built using a library called Express.js, a 
framework for quickly creating web applications in Node. The 
main website is static HTML, JavaScript and CSS, served from 
a directory on the server. The software also exposes API 
endpoints to which the client can make REST requests, using 
AJAX; these endpoints allow the client to retrieve the status of 
an individual job, lists of completed jobs and information about 
the classifiers. Additionally, the client initiates a WebSocket 
connection each time a new page is loaded; this connection, 
identified using a unique string stored in the user’s session, 
allows information about the job to be passed quickly and 
asynchronously between the client and the server. 

When the user connects to the website they are greeted with 
an upload page. This allows them to select a sample image, using 
a ‘drag and drop’ interface or by clicking the form. The uploaded 
file is stored in the cloud, in a dedicated S3 bucket, and the URL 
passed back to the client, ensuring that the image can be served 
regardless of which front-end node they connect to. Local copies 
are then deleted. The user is then presented with the option to 
select a region of the image containing the font to identify; this 
is achieved using an intuitive ‘click and drag’ mechanism. Once 
the region, known as the bounding-box, has been selected, the 
client sends this via WebSockets to the server, which then adds 
a processing request to an SQS queue. Whilst the request is 
being processed, the user is presented with a ‘spinner’; during 
this time the client is polling a REST endpoint for the completion 
status. Once the results are ready, the user is redirected to a 
results page, showing the classification status, and allowing 
them to see detected objects by hovering over a displayed link. 
The website design can be seen in Fig. 2. 

 The website is designed to be lightweight, easy to use and 
informative. There is a requirement for JavaScript, due to the 
asynchronous nature of the communication, however there are 
relatively few[1] Internet users without JavaScript, so this was 

 
Fig. 2. The upload page of the website, as displayed by Google Chrome. 



deemed to be acceptable. The website also features some 
minimal animation, fading between pages, to provide interest 
but not distract the user. There are customised error pages, 
including 400 errors, 500 errors and a “job not found” page. 
Finally, no page exceeds 200 KB1, excluding sample images, 
keeping loading times low. 

B. Back-end 
The back-end, processing nodes performs classification on 

the sample images uploaded by users, using computer vision to 
do so. The standard approach for performing image 
classification is to use the Viola-Jones algorithm[2]: this uses a 
framework of prominent features, present in the object being 
searched for, to determine whether the object is present in an 
image or not. The feature frameworks are commonly known as 
Haar Cascade classifiers and are created by performing a 
lengthy training step, in which a large number of images 
containing the target object are analysed. 

To implement the classification, I used the open-source 
library OpenCV. The library is a fast, full-featured computer 
vision package, used extensively in academia and industry[3]. 
OpenCV is written in C++ but has bindings available in many 
languages, including Node and Python. I opted to use Node for 
my back-end, for some of the same reasons stated earlier in this 
section, as well as its ease of integration with the AWS API, and 
consistency across the application. 

The processing node is fairly simple in function: it 
periodically polls the job queue, checking for processing 
requests created by the front-end. Once a job has been retrieved, 
the software retrieves the sample image from cloud storage, 
crops it to the required size, as specified by the user-specified 
bounding-box, and then runs all the available classifiers on the 
image by calling the relevant OpenCV functions. The software 
then determines the results of the classification and stores the 
result in a database, making it available to the front-end. All 
downloaded sample images are removed after use, ensuring the 
server does not run out of storage, and completed jobs are 
removed from the queue. 

As mentioned in the Introduction, the processing nodes don’t 
actually identify fonts. This is due to the enormous amount of 
time, and resource, required to train and test classifiers for fonts. 
The processing nodes work in the exact way that they would for 
font classification, however, performing the same algorithm on 
the same classifier type. The software currently runs several face 
classifiers, provided with the OpenCV library, and a somewhat-
temperamental banana classifier[4]. 

C. Instances 
For both the front- and back-end nodes, I set up instance 

images (AMIs) containing the requisite software. These images 
were configured to start the software at boot, allowing them to 
be quickly and easily deployed when required. The AMIs were 
installed with Git and Node.js, also nginx for the front-end, 
imagemagick and OpenCV for the back-end. Each image was 
also installed with a tagged version of the GitHub repository for 
the relevant software. The images used a 64-bit Ubuntu Linux 

distribution as the operating system, allowing for a range of 
servers to be provisioned – with greater than 4 GB of memory, 
if required. The upstart service, along with a tool called forever, 
was used to start the Node applications at boot. 
 

A third AMI was also created for the purpose of training 
new Haar Cascade classifiers. This image contained OpenCV 
and a selection of tools that I wrote for the purpose2. Training a 
classifier involves using these tools manually, specifying the 
desired font to classify, running a tool to create positive samples 
and then starting the training program3. It would be possible, 
with more time, to create a web interface to facilitate and 
automate this however. 
 

The former two AMIs are extremely lightweight and will 
run on the free-tier instance of Amazon’s cloud hosting, Elastic 
Cloud Compute (EC2). Running on the free-tier, t2.micro, the 
CPU utilisation is 0.1% and 20% at idle, for the front- and back-
end nodes, rising to 40% each with 10 concurrent connections, 
all attempting to classify images. An instance of this size is 
extremely cheap, costing under $10/month4, and the application 
can cope with light load with just two of these provisioned. You 
can see the CloudWatch graphs showing the CPU utilisation in 
Fig. 3. 
 

The training AMI is significantly more resource-hungry. 
Training a classifier is a process that takes a few hours to several 
days depending upon factors such as the size of the sample 
images, the number of sample images and the number of 
iterations – more of which all increases accuracy, as well as 
training time. The training process is also fairly memory-
intensive, and will run out of memory fairly quickly on the 

1. This could be reduced further by minifying the pages; this was not 
performed in order to keep the code easily readable. 

2. These tools are ‘literary-rain’, available at https://github.com/font-
detective/literary-rain, and ‘font-detective-classifier-training’, available at 
https://github.com/font-detective/font-detective-classifier-training. 

3. There is a video demonstration of the tool available at 
https://vimeo.com/150895682. 

4. As calculated by 0.013 * (24 * 30) = 9.36 

 
Fig. 3. Graphs indicating the processing load on a front-end node with 10 
concurrent connections   



t2.micro, resorting to swap storage and further slowing the 
process. In my experiments, I found that the m3.large instance 
type performed fairly well. Keeping a training instance online 
is much costlier than running the application, costing around 
$90/month5; this is $6 for each classifier6. 

D. Scaling 
In order to fulfil the automatic scalability requirement, 

specified in the Design section, I created AutoScaling Groups 
(ASGs) for both front-end and processing nodes. These are an 
infrastructure component within AWS that allows for the 
definition of rules for scaling the number of EC2 instances up 
or down. Both ASGs scale the number of instances up by one 
once the average CPU utilisation reaches 80%, and down by 
one when it is beneath 40%, within a range of one to five7. This 
scaling occurs without any human action and, providing the 
activity spike does not exceed the health check interval (see 
Network sub-section, later in this section), there should be no 
downtime as a result. In the event that a sharp activity spike 
does occur, the application will recover itself, launching an 
instance at a time until the load falls beneath the threshold. 

 
An ASG works in tandem with a LaunchConfiguration, a 

component for specifying an instance type and an AMI to 
launch. Both front-end and processing nodes launch their 
respective AMIs onto t2.micro instances during scaling, as 
specified in the Instances sub-section. The configuration also 
specifies which subnet and security group to place the instance 
in, ensuring all security settings propagate correctly. 

E. Message Queue 
A queue is implemented using Amazon’s Simple Queue 

Service (SQS): this scales under heavy load and provides 
features such as atomic consumption of messages, ensuring 
only one receiving instance receives each message for a 
specified timeout. SQS is used for the job queue, containing 
processing requests created by the front-end nodes. When a 
processing node consumes a message it is hidden from other 
nodes for 60 seconds, giving the software time to complete the 
job and upload the results to the database; in practise, a job is 
usually completed in two to five seconds, leaving a large margin 
for error. If a job has not been removed from the queue in this 
time, it becomes visible to the other processing nodes; this 
behaviour is desirable in the event of a processing node failing 
during a job. 

F. Cloud Storage 
The application stores user-uploaded images using 

Amazon’s Simple Scalable Storage (S3) component. S3 scales 
automatically under heavy load and provides a useful, central 
data store for content common to all front-end nodes. A second 
S3 ‘bucket’ is also used as a failover website, displaying a static 
error page in the event of simultaneous failure of all the front-

end nodes. This utilises a feature of S3 for hosting a static 
website, where the exposed endpoint can be aliased in the 
hosting record, allowing it to serve contain at a domain name. 
Hosting the main website using S3 does not make sense, 
however, due to the dynamic nature of some of the pages. 

G. Database 
Database storage is performed using the DynamoDB 

NoSQL, another offering by Amazon. This is utilised for 
quickly and easily storing result information from the 
processing nodes, and to store longer-term data about the 
classifiers used, such as descriptions and names8. The database 
contains two tables, one for the job results and one for the 
classifier data. As DynamoDB is NoSQL, data stored within it 
is only eventually consistent, and may not be available to all 
nodes at the same time. However, as data is only written to the 
database once, and only read thereafter, this is of no concern. 

H. Network 
A network architecture was designed using the tools 

available on the AWS console. As mentioned in the previous 
section, I wanted to ensure that individual components were 
properly isolated from one another, residing in dedicated 
subnets, on identifiable IP ranges. To this effect, I created a 
subnet for the front-end nodes, specifying that it automatically 
assign a public IP address to each instance. I also create a subnet 
for the processing nodes; these were firewalled from the 
Internet and could only be accessed via SSH from a specified 
IP range, tunnelling through a gateway node. 
 

To further segregate the nodes, I created Security Groups, 
collections of firewall rules, for the front-end and processing 
nodes. The front-end is accessible from the Internet, via a direct 
client connection, and via the ELB, on a different port. The 
processing nodes are not open to the Internet and are only 
accessible, via SSH, from a gateway node, as described in the 
Design section. The ELB resides in its own subnet; connections 
from this subnet are permitted to the front-end using the 
PROXY protocol, as described in later in this section. 
 

Other network resources, namely the DynamoDB tables, the 
S3 buckets and the SQS message queue, are also controlled 
using Security Groups. The database tables are only readable 
by instances in the front-end subnet, and only writeable by those 
in the processing node subnet. The S3 image bucket is readable 
by the public, as this is used as a distributed store for uploaded 
images (known as a content distributed network, or CDN), and 
its endpoints are embedded into the website directly. The SQS 
queue is writable by both front-end and processing nodes, but 
only readable by the latter, as jobs are not processed by the front 
end. This configuration minimises the potential for harm in the 
event of an application error, or malicious action if a server is 
compromised, as each node is sandboxed to the greatest extent 
possible.  
 

5. As calculated by 0.12 * (24 * 30) = 86.4 

6. Assuming it takes two days to train the average classifier. 

7. Obviously in a real-world scenario, the maximum value would be set to 
much greater than this. This was kept conservatively low to protect my bank 
balance. 8. This information is displayed in a tool-tip on the results page. 



External routing to the application uses the domain name 
nugenthill.com, a domain I purchased for another project but 
never used. The routing service available within AWS is called 
Route53, which I utilise to route to a load-balancer and to a 
failover site. The ELB routes the request to the front-end node 
with the least CPU utilisation, ensuring maximum performance 
across the network. Route53 can also be used to route according 
to other policies, namely geolocation and latency; the former 
would be used to direct requests to the nearest geographical 
server in a multi-zone application. The ELB is monitored using 
a HealthCheck, another tool available via AWS. The 
HealthCheck performs a HTTP GET request to load-balancer 
every 10 seconds, ensuring that it is still online. After three 
successive failures, the ELB is considered offline and the route 
is redirected to the failover site, a static error message hosted 
on an S3 bucket. A diagram of the network can be seen in Fig. 
4. 
 

The application was designed to minimise centralisation, 
allowing geographically disparate instances to be used, 
ensuring low-latency response times. The decentralised 
approach also has the benefit of allowing easy, automatic 

scaling, in response to periods of high or low load. The current 
configuration only utilised a single datacentre, or zone, 
however by duplicating the infrastructure in another, or several 
more datacentres, and by routing client requests to the nearest 
using a geolocation policy, this can be easily extended. 
 

One caveat I experience was when routing WebSocket 
connection through the: the load-balancer did not provide the 
client’s IP address for TCP connections, which are partially 
used by the sockets, as such, the sender’s location could not be 
determined. To resolve this, I had to enable the PROXY 
protocol[5] as a policy within the ELB, routing the requests to 
a specific port on the front-end nodes. The policy utilises the X-
Forwarded-For header to store the client’s address; this is then 
stripped and the packet re-routed to the front-end software, 
bound to a different port, by a local Nginx instance, run on each 
front-end node. [6]. This behaviour can be seen in Fig. 5. 

I. Automating Deployment 
Once the network infrastructure had been completed, I 

automated the set-up process using Amazon’s CloudFormation 
(CF). This tool allows AWS infrastructure to be specified in 

 
Fig. 4. Set-up diagram, as displayed by the Amazon Web Services CloudFormation tool. The diagram shows two subnets, residing within a Virtual Private 
Cloud (VPC). The left-hand subnet contains a front-end instance (bottom-right), with attached storage volume (bottom-left); it also contains a 
LaunchConfiguration (middle-left), an AutoScaling Group (top-left) and a load-balancer (top-right). The right-hand subnet contains a process node instance 
with an attached volume, a LaunchConfiguration and an AutoScaling Group. The VPC is attached to an Internet gateway (top-middle) and contained within a 
Route53 Hosted Zone. Also within the VPC  is an S3 bucket (bottom-left), an SQS queue (bottom-middle) and two DynamoDB tables (bottom-right). The icons 
to the right of the VPC are HealthChecks for the front-end and processing nodes. The icons to the left of the VPC are the routing table entries for the domain. 



JSON and provisioned automatically via an online-interface. 
Utilising CF for this dramatically increases the speed at which 
the application can be set-up, not only streamlining the process 
but shielding the user from the hazardous task of using the AWS 
console. 
 
 

IV. CONSIDERATIONS 
All AMIs are configured to run on start up, leading to quick 

spin-up times during scaling or deployment. A possible 
improvement, however, would be to configure the instances to 
automatically update. The only way to do this currently would 
be to bring down the application and re-deploy new instances 
with updated code – or to update the live instances manually! 
Utilising a service such as GitHub’s web-hooks could facilitate 
auto-updating: when a new release is tagged on the master 
branch relevant repositories software is notified and can respond 
accordingly, by performing a pull of the latest code, then 
restarting the software. 

V. CONCLUSION 
The application I envisioned was a complex, enterprise-

scale project that scaled automatically and responsively, 
refused to ‘go down’ under heavy loads and provided a solution 
to a yet-unsolved problem: the identification of fonts. The 
vision was ambitious and not entirely realised, however, the 
application delivered is capable of scaling both the front-and 

back-ends automatically, monitoring the health of all the nodes 
and the routes, redirecting the user to a static, failover site in the 
event of emergency and performing image classification in the 
cloud. 
 

The major drawback of the application is its inability to 
identify fonts, something it is clearly designed to do. It does, 
however, identify faces and bananas, tasks which are 
computationally identical. The task of training classifiers for 
each font has been tackled in the undertaking of this project, 
and the relevant tools have been created, however the scope of 
creating and testing the classifiers seems beyond that of creating 
a cloud application. 
 

To take the application further would involve automating 
the update process, as specified in the Considerations section, 
and to design and build an interface to facilitate classifier 
training, as described in the Instances sub-section. Then, with 
the addition of some font classifiers, the application would be 
complete and, in principal, highly functional. 
 

If you wish to see more, full code listings are provided at 
the ‘font-detective’ GitHub organization, available at 
https://github.com/font-detective. This includes the front-end 
and processing node software, instructions for deploying the 
application, examples and the CloudFormation template. 
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Fig. 5. Illustration of the PROXY routing protocol in use with the front-
end server. Here the client connects to the load-balancer which forwards 
the request using the PROXY protocol, adding the X-Forwarded-For 
header with the client’s IP address. The front-end node runs an instance of 
Nginx that strips this header and forwards the request to the web server 
software, replacing the origin address with the client’s IP. Nginx listens at 
port 80 for direct connections, and 8080 for load-balancer connections. The 
webserver software listens at port 3000. 


