
Font Detective: Identify Fonts in the Cloud
A report on the design and implementation of a cloud-hosted web application

Luke Mitchell
University of Bristol

Merchant Venturers Building
Bristol, UK

lm0466@my.bristol.ac.uk

Abstract—This paper presents Font Detective, a cloud-hosted

application that performs computer vision analysis on user-
supplied images with the aim of identifying a font present. The app
utilises Amazon’s Web Services platform to deploy a fully-
scalable, load-balanced and resilient product. The application is
available online at nugenthill.com.

Keywords—cloud; font; computer vision; OpenCV; Amazon;
AW; Haar-like; cascade

I. INTRODUCTION
The inspiration behind Font Detective came gradually,

through multiple meeting with designers, in a variety of
scenarios. It seemed to me that design is often about gaining
inspiration in the work of another, questioning “what colour is
used here?” and working with a similar palette, asking “what if
I use a similar image, but in this context?”. Until now, however,
identification of a font has been almost impossible, down to pure
experience. I have attempted to create a tool to allow designers,
along with the wider population, to easily identify a font used in
an image, and to fuel their creativity.

Font Detective requires users to upload sample images to the
website, consuming a large amount of space. Font Detective also
requires image classification using computer vision techniques,
a computationally-intensive task, consuming a lot of resource.
Due to these requirements, the task lends itself to the cloud, an
environment where available resources can easily be scaled to
meet demand.

The application I have created allows a user to upload an
image and have it classified, in the cloud, in real time.
Unfortunately, due to time constraints, I have not been able to
progress this to the classification of fonts; I have, however, put
in place a framework that allows the easy replacement of the
current classifiers (bananas and faces) with those for individual
fonts. In Fig. 1 you can see an example of a completed job,
showing a classified face.

II. DESIGN
I compiled several key goals when designing Font Detective

(the application), wishing to ensure consistently high quality of
service with a minimum of human intervention. These goals
were that the application scales automatically in response to
periods of high or low utilisation; that the application is capable
of self-diagnosing any issues or errors experienced, and that

appropriate action would be taken; that the application is secure,
with isolated components where possible; that the application
minimises downtime, even during upgrades and, finally, that it
can be deployed quickly and easily, in an automated fashion
where possible. The motivation for these goals is to reduce
dependence upon human activity, which is intrinsically error-
prone, and to shift responsibility to automated, testable services,
scripts and health checks.

To achieve these goals, I considered the main infrastructure-
as-a-service (IaaS) providers: Amazon Web Services (AWS),
Microsoft Azure and Digital Ocean. I also considered platform-
as-a-service (PaaS) providers such as Google Cloud and Heroku,
however I quickly deemed that these would not be suitable due
to the diverse requirements of the application. PaaS provides a
quick, easy-to-deploy environment for applications utilising
certain technologies, such as Ruby, Node.js and Go, it doesn’t
however, have the flexibility of IaaS platforms, particularly with
the deployment of a scalable, multi-element application.

I also opted to ignore Rackspace, Linode and the multitude
of similar offerings as, although their hosting was cloud-based,
they lacked the breadth of tools of the larger providers. Amazon
and Microsoft both offered a wealth of tools for network

Fig. 1. Interface showing results of classification

monitoring, routing, instance-scaling and storage, whereas the
smaller platforms often lacked one or more of these elements.

Another disadvantage was the lack of documentation and
community support, comparatively with AWS, Azure and
Digital Ocean; I feared this would slow development in a project
with a relatively tight time budget.

Comparing AWS, Azure and Digital Ocean, I found that the
former two have significantly more functionality. Digital Ocean
provides high-quality cloud hosting, with the ability to auto-
scale and dynamically route traffic, but lacked platform features
such as databases, queues or health checks. All of these features
were possible but required configuration by hand. Amazon and
Microsoft were much more similar in their features; as such my
decision to use AWS was ultimately decided by familiarity with
the service.

To ensure easy scalability for the application, in keeping
with the specified design criteria, I decided that the architecture
should feature homogenous front-end nodes, serving the website
content and communicating with clients, and homogenous back-
end nodes, processing the requests as they are issued. The
advantage here is that software only has to be written once and
that network load can easily be balanced across all the servers:
there is no individual point of failure. The application features a
front-end node with a web server, a processing node capable of
performing classification and, optionally, a training server
capable of creating new classifiers.

To maximize security, processing nodes are not accessible
via the Internet; they need only to communicate with the front-
end nodes and the database. Front-end nodes require Internet
access but should only have read access to database resources,
as these will only be used to display results, not written to
directly. The network is divided into subnets accordingly,
isolating the processing nodes and allowing access permissions
to easily be set on that database and other infrastructure.

III. IMPLEMENTATION
The application involved two main development areas: the

front-end website, with the software responsible for serving it,
and the back-end processing service, performing classification.
These areas could be worked on independently once an interface
had been specified, and so I developed them serially, focusing
on the front-end first.

A. Front-end
The front-end is required to serve static content, HTML,

JavaScript, CSS and images, and to handle user-uploaded
sample images. Uploaded images were stored in the cloud and a
processing request added to a queue, making it available to the
processing nodes. Additionally, some asynchronous
communication between the front-end and the client’s browser
is performed, leveraging WebSockets and a REST API to
achieve this. Due to the breadth of the requirements, I opted to
implement a custom web server for the task; simple file-serving
could easily be achieved using Apache or Nginx, but adding the
additional functionality would require separate applications to
be written anyway.

The web server is implemented using Node.js (Node), a
lightweight, asynchronous server-side JavaScript engine with a

wealth of plugins available. Node applications are single-
threaded by default, consuming very little in the way of
resources, lending them to the lower-tier servers available on
AWS. Another advantage of using Node is that multiple
instances of the web server may be run in parallel when required,
for example when running on a larger, multi-core server. This
capability further lends it to the intended scalability of the
application.

The software is built using a library called Express.js, a
framework for quickly creating web applications in Node. The
main website is static HTML, JavaScript and CSS, served from
a directory on the server. The software also exposes API
endpoints to which the client can make REST requests, using
AJAX; these endpoints allow the client to retrieve the status of
an individual job, lists of completed jobs and information about
the classifiers. Additionally, the client initiates a WebSocket
connection each time a new page is loaded; this connection,
identified using a unique string stored in the user’s session,
allows information about the job to be passed quickly and
asynchronously between the client and the server.

When the user connects to the website they are greeted with
an upload page. This allows them to select a sample image, using
a ‘drag and drop’ interface or by clicking the form. The uploaded
file is stored in the cloud, in a dedicated S3 bucket, and the URL
passed back to the client, ensuring that the image can be served
regardless of which front-end node they connect to. Local copies
are then deleted. The user is then presented with the option to
select a region of the image containing the font to identify; this
is achieved using an intuitive ‘click and drag’ mechanism. Once
the region, known as the bounding-box, has been selected, the
client sends this via WebSockets to the server, which then adds
a processing request to an SQS queue. Whilst the request is
being processed, the user is presented with a ‘spinner’; during
this time the client is polling a REST endpoint for the completion
status. Once the results are ready, the user is redirected to a
results page, showing the classification status, and allowing
them to see detected objects by hovering over a displayed link.
The website design can be seen in Fig. 2.

 The website is designed to be lightweight, easy to use and
informative. There is a requirement for JavaScript, due to the
asynchronous nature of the communication, however there are
relatively few[1] Internet users without JavaScript, so this was

Fig. 2. The upload page of the website, as displayed by Google Chrome.

deemed to be acceptable. The website also features some
minimal animation, fading between pages, to provide interest
but not distract the user. There are customised error pages,
including 400 errors, 500 errors and a “job not found” page.
Finally, no page exceeds 200 KB1, excluding sample images,
keeping loading times low.

B. Back-end
The back-end, processing nodes performs classification on

the sample images uploaded by users, using computer vision to
do so. The standard approach for performing image
classification is to use the Viola-Jones algorithm[2]: this uses a
framework of prominent features, present in the object being
searched for, to determine whether the object is present in an
image or not. The feature frameworks are commonly known as
Haar Cascade classifiers and are created by performing a
lengthy training step, in which a large number of images
containing the target object are analysed.

To implement the classification, I used the open-source
library OpenCV. The library is a fast, full-featured computer
vision package, used extensively in academia and industry[3].
OpenCV is written in C++ but has bindings available in many
languages, including Node and Python. I opted to use Node for
my back-end, for some of the same reasons stated earlier in this
section, as well as its ease of integration with the AWS API, and
consistency across the application.

The processing node is fairly simple in function: it
periodically polls the job queue, checking for processing
requests created by the front-end. Once a job has been retrieved,
the software retrieves the sample image from cloud storage,
crops it to the required size, as specified by the user-specified
bounding-box, and then runs all the available classifiers on the
image by calling the relevant OpenCV functions. The software
then determines the results of the classification and stores the
result in a database, making it available to the front-end. All
downloaded sample images are removed after use, ensuring the
server does not run out of storage, and completed jobs are
removed from the queue.

As mentioned in the Introduction, the processing nodes don’t
actually identify fonts. This is due to the enormous amount of
time, and resource, required to train and test classifiers for fonts.
The processing nodes work in the exact way that they would for
font classification, however, performing the same algorithm on
the same classifier type. The software currently runs several face
classifiers, provided with the OpenCV library, and a somewhat-
temperamental banana classifier[4].

C. Instances
For both the front- and back-end nodes, I set up instance

images (AMIs) containing the requisite software. These images
were configured to start the software at boot, allowing them to
be quickly and easily deployed when required. The AMIs were
installed with Git and Node.js, also nginx for the front-end,
imagemagick and OpenCV for the back-end. Each image was
also installed with a tagged version of the GitHub repository for
the relevant software. The images used a 64-bit Ubuntu Linux

distribution as the operating system, allowing for a range of
servers to be provisioned – with greater than 4 GB of memory,
if required. The upstart service, along with a tool called forever,
was used to start the Node applications at boot.

A third AMI was also created for the purpose of training
new Haar Cascade classifiers. This image contained OpenCV
and a selection of tools that I wrote for the purpose2. Training a
classifier involves using these tools manually, specifying the
desired font to classify, running a tool to create positive samples
and then starting the training program3. It would be possible,
with more time, to create a web interface to facilitate and
automate this however.

The former two AMIs are extremely lightweight and will
run on the free-tier instance of Amazon’s cloud hosting, Elastic
Cloud Compute (EC2). Running on the free-tier, t2.micro, the
CPU utilisation is 0.1% and 20% at idle, for the front- and back-
end nodes, rising to 40% each with 10 concurrent connections,
all attempting to classify images. An instance of this size is
extremely cheap, costing under $10/month4, and the application
can cope with light load with just two of these provisioned. You
can see the CloudWatch graphs showing the CPU utilisation in
Fig. 3.

The training AMI is significantly more resource-hungry.
Training a classifier is a process that takes a few hours to several
days depending upon factors such as the size of the sample
images, the number of sample images and the number of
iterations – more of which all increases accuracy, as well as
training time. The training process is also fairly memory-
intensive, and will run out of memory fairly quickly on the

1. This could be reduced further by minifying the pages; this was not
performed in order to keep the code easily readable.

2. These tools are ‘literary-rain’, available at https://github.com/font-
detective/literary-rain, and ‘font-detective-classifier-training’, available at
https://github.com/font-detective/font-detective-classifier-training.

3. There is a video demonstration of the tool available at
https://vimeo.com/150895682.

4. As calculated by 0.013 * (24 * 30) = 9.36

Fig. 3. Graphs indicating the processing load on a front-end node with 10
concurrent connections

t2.micro, resorting to swap storage and further slowing the
process. In my experiments, I found that the m3.large instance
type performed fairly well. Keeping a training instance online
is much costlier than running the application, costing around
$90/month5; this is $6 for each classifier6.

D. Scaling
In order to fulfil the automatic scalability requirement,

specified in the Design section, I created AutoScaling Groups
(ASGs) for both front-end and processing nodes. These are an
infrastructure component within AWS that allows for the
definition of rules for scaling the number of EC2 instances up
or down. Both ASGs scale the number of instances up by one
once the average CPU utilisation reaches 80%, and down by
one when it is beneath 40%, within a range of one to five7. This
scaling occurs without any human action and, providing the
activity spike does not exceed the health check interval (see
Network sub-section, later in this section), there should be no
downtime as a result. In the event that a sharp activity spike
does occur, the application will recover itself, launching an
instance at a time until the load falls beneath the threshold.

An ASG works in tandem with a LaunchConfiguration, a

component for specifying an instance type and an AMI to
launch. Both front-end and processing nodes launch their
respective AMIs onto t2.micro instances during scaling, as
specified in the Instances sub-section. The configuration also
specifies which subnet and security group to place the instance
in, ensuring all security settings propagate correctly.

E. Message Queue
A queue is implemented using Amazon’s Simple Queue

Service (SQS): this scales under heavy load and provides
features such as atomic consumption of messages, ensuring
only one receiving instance receives each message for a
specified timeout. SQS is used for the job queue, containing
processing requests created by the front-end nodes. When a
processing node consumes a message it is hidden from other
nodes for 60 seconds, giving the software time to complete the
job and upload the results to the database; in practise, a job is
usually completed in two to five seconds, leaving a large margin
for error. If a job has not been removed from the queue in this
time, it becomes visible to the other processing nodes; this
behaviour is desirable in the event of a processing node failing
during a job.

F. Cloud Storage
The application stores user-uploaded images using

Amazon’s Simple Scalable Storage (S3) component. S3 scales
automatically under heavy load and provides a useful, central
data store for content common to all front-end nodes. A second
S3 ‘bucket’ is also used as a failover website, displaying a static
error page in the event of simultaneous failure of all the front-

end nodes. This utilises a feature of S3 for hosting a static
website, where the exposed endpoint can be aliased in the
hosting record, allowing it to serve contain at a domain name.
Hosting the main website using S3 does not make sense,
however, due to the dynamic nature of some of the pages.

G. Database
Database storage is performed using the DynamoDB

NoSQL, another offering by Amazon. This is utilised for
quickly and easily storing result information from the
processing nodes, and to store longer-term data about the
classifiers used, such as descriptions and names8. The database
contains two tables, one for the job results and one for the
classifier data. As DynamoDB is NoSQL, data stored within it
is only eventually consistent, and may not be available to all
nodes at the same time. However, as data is only written to the
database once, and only read thereafter, this is of no concern.

H. Network
A network architecture was designed using the tools

available on the AWS console. As mentioned in the previous
section, I wanted to ensure that individual components were
properly isolated from one another, residing in dedicated
subnets, on identifiable IP ranges. To this effect, I created a
subnet for the front-end nodes, specifying that it automatically
assign a public IP address to each instance. I also create a subnet
for the processing nodes; these were firewalled from the
Internet and could only be accessed via SSH from a specified
IP range, tunnelling through a gateway node.

To further segregate the nodes, I created Security Groups,
collections of firewall rules, for the front-end and processing
nodes. The front-end is accessible from the Internet, via a direct
client connection, and via the ELB, on a different port. The
processing nodes are not open to the Internet and are only
accessible, via SSH, from a gateway node, as described in the
Design section. The ELB resides in its own subnet; connections
from this subnet are permitted to the front-end using the
PROXY protocol, as described in later in this section.

Other network resources, namely the DynamoDB tables, the
S3 buckets and the SQS message queue, are also controlled
using Security Groups. The database tables are only readable
by instances in the front-end subnet, and only writeable by those
in the processing node subnet. The S3 image bucket is readable
by the public, as this is used as a distributed store for uploaded
images (known as a content distributed network, or CDN), and
its endpoints are embedded into the website directly. The SQS
queue is writable by both front-end and processing nodes, but
only readable by the latter, as jobs are not processed by the front
end. This configuration minimises the potential for harm in the
event of an application error, or malicious action if a server is
compromised, as each node is sandboxed to the greatest extent
possible.

5. As calculated by 0.12 * (24 * 30) = 86.4

6. Assuming it takes two days to train the average classifier.

7. Obviously in a real-world scenario, the maximum value would be set to
much greater than this. This was kept conservatively low to protect my bank
balance. 8. This information is displayed in a tool-tip on the results page.

External routing to the application uses the domain name
nugenthill.com, a domain I purchased for another project but
never used. The routing service available within AWS is called
Route53, which I utilise to route to a load-balancer and to a
failover site. The ELB routes the request to the front-end node
with the least CPU utilisation, ensuring maximum performance
across the network. Route53 can also be used to route according
to other policies, namely geolocation and latency; the former
would be used to direct requests to the nearest geographical
server in a multi-zone application. The ELB is monitored using
a HealthCheck, another tool available via AWS. The
HealthCheck performs a HTTP GET request to load-balancer
every 10 seconds, ensuring that it is still online. After three
successive failures, the ELB is considered offline and the route
is redirected to the failover site, a static error message hosted
on an S3 bucket. A diagram of the network can be seen in Fig.
4.

The application was designed to minimise centralisation,
allowing geographically disparate instances to be used,
ensuring low-latency response times. The decentralised
approach also has the benefit of allowing easy, automatic

scaling, in response to periods of high or low load. The current
configuration only utilised a single datacentre, or zone,
however by duplicating the infrastructure in another, or several
more datacentres, and by routing client requests to the nearest
using a geolocation policy, this can be easily extended.

One caveat I experience was when routing WebSocket
connection through the: the load-balancer did not provide the
client’s IP address for TCP connections, which are partially
used by the sockets, as such, the sender’s location could not be
determined. To resolve this, I had to enable the PROXY
protocol[5] as a policy within the ELB, routing the requests to
a specific port on the front-end nodes. The policy utilises the X-
Forwarded-For header to store the client’s address; this is then
stripped and the packet re-routed to the front-end software,
bound to a different port, by a local Nginx instance, run on each
front-end node. [6]. This behaviour can be seen in Fig. 5.

I. Automating Deployment
Once the network infrastructure had been completed, I

automated the set-up process using Amazon’s CloudFormation
(CF). This tool allows AWS infrastructure to be specified in

Fig. 4. Set-up diagram, as displayed by the Amazon Web Services CloudFormation tool. The diagram shows two subnets, residing within a Virtual Private
Cloud (VPC). The left-hand subnet contains a front-end instance (bottom-right), with attached storage volume (bottom-left); it also contains a
LaunchConfiguration (middle-left), an AutoScaling Group (top-left) and a load-balancer (top-right). The right-hand subnet contains a process node instance
with an attached volume, a LaunchConfiguration and an AutoScaling Group. The VPC is attached to an Internet gateway (top-middle) and contained within a
Route53 Hosted Zone. Also within the VPC is an S3 bucket (bottom-left), an SQS queue (bottom-middle) and two DynamoDB tables (bottom-right). The icons
to the right of the VPC are HealthChecks for the front-end and processing nodes. The icons to the left of the VPC are the routing table entries for the domain.

JSON and provisioned automatically via an online-interface.
Utilising CF for this dramatically increases the speed at which
the application can be set-up, not only streamlining the process
but shielding the user from the hazardous task of using the AWS
console.

IV. CONSIDERATIONS
All AMIs are configured to run on start up, leading to quick

spin-up times during scaling or deployment. A possible
improvement, however, would be to configure the instances to
automatically update. The only way to do this currently would
be to bring down the application and re-deploy new instances
with updated code – or to update the live instances manually!
Utilising a service such as GitHub’s web-hooks could facilitate
auto-updating: when a new release is tagged on the master
branch relevant repositories software is notified and can respond
accordingly, by performing a pull of the latest code, then
restarting the software.

V. CONCLUSION
The application I envisioned was a complex, enterprise-

scale project that scaled automatically and responsively,
refused to ‘go down’ under heavy loads and provided a solution
to a yet-unsolved problem: the identification of fonts. The
vision was ambitious and not entirely realised, however, the
application delivered is capable of scaling both the front-and

back-ends automatically, monitoring the health of all the nodes
and the routes, redirecting the user to a static, failover site in the
event of emergency and performing image classification in the
cloud.

The major drawback of the application is its inability to
identify fonts, something it is clearly designed to do. It does,
however, identify faces and bananas, tasks which are
computationally identical. The task of training classifiers for
each font has been tackled in the undertaking of this project,
and the relevant tools have been created, however the scope of
creating and testing the classifiers seems beyond that of creating
a cloud application.

To take the application further would involve automating
the update process, as specified in the Considerations section,
and to design and build an interface to facilitate classifier
training, as described in the Instances sub-section. Then, with
the addition of some font classifiers, the application would be
complete and, in principal, highly functional.

If you wish to see more, full code listings are provided at
the ‘font-detective’ GitHub organization, available at
https://github.com/font-detective. This includes the front-end
and processing node software, instructions for deploying the
application, examples and the CloudFormation template.

REFERENCES
[1] Herlihy, P. (2013). How many people are missing out on JavaScript

enhancement? [online] Government Digital Service. Available at:
https://gds.blog.gov.uk/2013/10/21/how-many-people-are-missing-out-
on-javascript-enhancement/ [Accessed 8 Jan. 2016].

[2] P.A. Viola, M.J. Jones, Rapid object detection using a boosted cascade of
simple features, in: CVPR, issue 1, 2001, pp. 511–518.

[3] Pulli, K., Baksheev, A., Kornyakov, K. and Eruhimov, V., 2012. Real-
time computer vision with OpenCV. Communications of the ACM, 55(6),
pp.61-69.

[4] Ball, T. (2014). mrnugget/opencv-haar-classifier-training. [online]
GitHub. Available at: https://github.com/mrnugget/opencv-haar-
classifier-training [Accessed 8 Jan. 2016].

[5] Tarreau, W. (2015). The PROXY protocol. [online] Haproxy.org.
Available at: http://www.haproxy.org/download/1.5/doc/proxy-
protocol.txt [Accessed 8 Jan. 2016].

[6] Docs.aws.amazon.com, (2016). X-Forwarded Headers for Elastic Load
Balancing - Elastic Load Balancing. [online] Available at:
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGui
de/x-forwarded-headers.html [Accessed 8 Jan. 2016].

Fig. 5. Illustration of the PROXY routing protocol in use with the front-
end server. Here the client connects to the load-balancer which forwards
the request using the PROXY protocol, adding the X-Forwarded-For
header with the client’s IP address. The front-end node runs an instance of
Nginx that strips this header and forwards the request to the web server
software, replacing the origin address with the client’s IP. Nginx listens at
port 80 for direct connections, and 8080 for load-balancer connections. The
webserver software listens at port 3000.

